

US005317877A

United States Patent [19]

Stuart

Patent Number: [11]

5,317,877

Date of Patent: [45]

Jun. 7, 1994

[54]		OLED TURBINE BLADE AIR FEED SYSTEM
[75]	Inventor:	Alan R. Stuart, Hamilton, Ohio
[73]	Assignee:	General Electric Company, Cincinnati, Ohio
[21]	Appl. No.:	923,676
[22]	Filed:	Aug. 3, 1992
[52]	U.S. Cl	
[56]		References Cited

References Cited

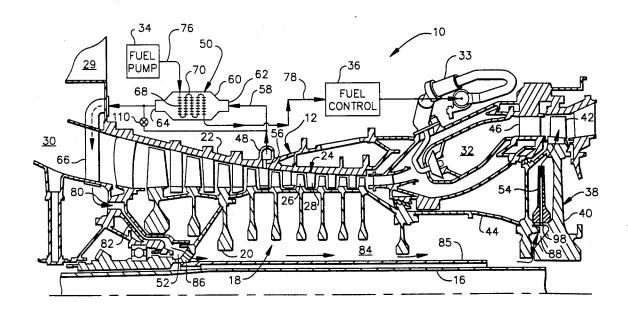
U.S. PATENT DOCUMENTS

2,891,382	6/1959	Broffitt 60/39.66
3,017,159	1/1962	Foster et al 253/39.15
3,814,539	6/1974	Klompas 416/95
4,136,516	1/1979	Corsmeier 60/736
4,137,705	2/1979	Andersen et al 60/39.08
4,187,675	2/1980	Wakeman 60/39.75
4,550,561	11/1985	Coffinberry 60/736
4,645,415	2/1987	Hovan et al 415/115
4,882,902	11/1989	Reigel et al 60/39.75
5,059,093	10/1991	Khalid et al 60/39.07
5,163,385	11/1992	Mazeaud et al 60/39.07

FOREIGN PATENT DOCUMENTS

120826	5/1988	Japan	 60/736
112631	4/1990	Japan	 60/736

OTHER PUBLICATIONS


Roth et al. How to Use Fuel as a Heat Sink Space & Aeronautics, Mar., 1960 pp. 56-60.

Primary Examiner-Louis J. Casaregola Attorney, Agent, or Firm-Jerome C. Squillaro; John R. Rafter

ABSTRACT [57]

A gas turbine engine having a compressor and an aircooled turbine is provided with a cooling system for decreasing the temperature of the turbine cooling air. A heat exchanger, mounted on the compressor casing, receives a portion of the pressurized air which is bled from the compressor. A heat sink medium is pumped through the heat exchanger into heat exchange relationship with the pressurized air, thereby cooling the air. The cooled air is then further pressurized and routed to and circulated through the turbine rotor blades to provide improved cooling thereof. The intercooling of the compressor bleed air permits a reduction in the quantity of compressor air required for turbine rotor blade cooling or allows an increase in turbine entry temperature and thus provides an improvement in engine power and performance. In the case where the heat sink medium is engine fuel, the heat extracted from the compressor bleed air is returned to the engine operating cycle in the form of heated engine fuel.

16 Claims, 3 Drawing Sheets

